Activity #8: Binary Search Trees

Recorder’s Report

Manager: Reader:

Recorder: Driver:

Date: Score: Satisfactory / Not Satisfactory
Record your team’s answers to the key questions (marked with key) below. W

(a) Model 2, Question #7, 8

(b) Model 2, Question #10

(c) Model 2, Question #13

(d) Model 3, Question #17

Activity #8: Binary Search Trees

Binary search trees allow binary search for fast lookup, addition, and removal of data items,
and can be used to implement dynamic sets and lookup tables. Since the nodes in a BST are
laid out in such a way that each comparison skips about half of the remaining tree, the lookup
performance is proportional to that of binary logarithm.

Content Learning Objectives

After completing this activity, students should be able to:

¢ Explain a binary search tree (BST)
* Knowledge of the rules for a BST

Process Skill Goals

During the activity, students should make progress toward:

e Write code that adds and accesses a BST

Preston Carman derived this work from Tammy VanDeGrift work found at https://
www.dropbox.com/sh/rl0yyth9g06psva/ AADBOCj4isIX5DAyrspgj8mFa and continues
to be licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://www.dropbox.com/sh/rl0yyth9g06psva/AADB0Cj4isIX5DAyrspqj8mFa
https://www.dropbox.com/sh/rl0yyth9g06psva/AADB0Cj4isIX5DAyrspqj8mFa

Model 1 BST Basics

Questions (20 min) Start time:

A BINARY SEARCH tree is a binary tree in which the data (keys) are stored in order such that
all nodes to the right of node N have keys bigger than N and all nodes to the left of node N
have keys smaller than N.

BSTs give us a good data structure to implement the dictionary ADT (insert, find, delete, create,
print).

Here is a simple BST where the keys are ints:

¢ Choose any node in the tree.
e [ts left subtree descendants are less than the node’s value.

¢ Its right subtree descendants are greater than the node’s value.

1. Is this a valid binary search tree? yes no If no, explain why:.

2. Is this a valid binary search tree? yes no If no, explain why.

3. Is this a valid binary search tree? yes no If no, explain why.

Inserting new nodes
How do we insert new nodes into a BST?

4. Suppose we want to insert the value 6. Where does it go?

5. Now, we want to insert 0. Where does it go?

6. Now, we want to insert 9. Where does it go?

Inserting into a BST is quite simple. Insertions happen at the leaves. Here is an iterative version:

/* insert
* inserts data item d into tree; note that this is a BST so it is ordered
*/
void insert(TreeData d, TreeNode **tptr) {
// create new node for data
TreeNode *toInsert = newTreeNode(d);
TreeNode *curr = *tptr;
if (curr == NULL) {
*tptr = tolnsert; // make this the tree
return;
}
// check value of t to see if new node should be to the right or left of curr
while (curr != NULL) {
if (d < curr->value) { // goes to left
if (curr->left == NULL) {
curr->left = tolnsert;
return;
}
// keep going left
curr = curr->left;
} else { // goes to right
if (curr->right == NULL) {
curr->right = tolnsert;
return;
}
// keep going right
curr = curr->right;

}
/* newTreeNode
* helper function, creates a new tree node with value d
* returns the address of the new node
*/
TreeNode *newTreeNode(TreeData d) {
TreeNode *toReturn = (TreeNode *)malloc(sizeof (TreeNode)) ;
toReturn->value = d;
toReturn->left = NULL;
toReturn->right = NULL;
return toReturn;

Here is a recursive version to insert an item:

/* insertR (this function is written recursively)
* inserts data item d into tree; note that this is a BST so it is ordered
*/
void insertR(TreeData d, TreeNode **tptr) {
if (*tptr == NULL) {
*tptr = newTreeNode(d);
} else if (d < (xtptr)->value) {
insertR(d, &(xtptr)->left);
} else {
insertR(d, &(*tptr)->right);

Model 2 Delete Node

Questions (10 min) Start time:

The final dictionary operation that we need to examine is delete. Given the tree below, how
would you delete each of the nodes (assume the deletions are independent, so you are starting
with the same tree prior to each deletion).

7. How would you delete 7? W

8. How would you delete 15? L

9. How would you delete 5?

In general, here is the strategy for deletion:

Delete(D, T):
If Find(D, T) is false, do nothing.
If T is a leaf node, delete it and update its parent to point to null instead of T.

If T is an interior node and T has just a right child, delete T and update its parent to point to T's
right child.
If T is an interior node and T has just a left child, delete T and update its parent to point to T’s

left child.
Else (T is interior with 2 children):

Find the next successor of T by traversing to T’s right child and then going all the way to the
leftmost leaf. This leftmost leaf is the next largest item in the tree. Copy the value of this
leftmost leaf to T. If leftmost leaf does not have a right subtree, delete leftmost leaf with same
procedure as leaf node above. If leftmost leaf has a right subtree, then delete with the same
procedure as interior node with just a right child.

10. Delete node 5 with procedure above. Cross out nodes that are deleted and values L
that are updated.

11. Delete node 10 with procedure above. Cross out nodes that are deleted and values that are
updated.

12. Delete node 15 with procedure above. Cross out nodes that are deleted and values that are
updated.

Even though we are modeling BSTs with nodes having just one value, a (key, value) pair could
be stored at each node, with the keys used as the comparison values when inserting, finding,
and deleting.

13. Does your group have any questions about binary search trees? Ll

Model 3 Creating a Tree

Questions (20 min) Start time:

Finding keys
Now, how would we find an element in the tree?

Let’s find 7. Start with the root. If the item is equal to 7, return true (or a pointer to this item). If
the item you are looking for is > than the root, treat right subtree as root. Otherwise, treat left
subtree as root. Keep applying this procedure until you hit a leaf.

14. What nodes are examined when looking for 77?

15. Now, look for 4. What nodes are examined when looking for 4?

You will implement the find function in lab.
Creating a new tree

Creating a new tree is pretty straightforward. A tree with no items is NULL.

TreeNode * tree = NULL;

To instantiate a tree with a list of items, we could do this:

/* createTree
* creates a binary search tree with data stored in array a

*/

TreeNode *createTree(TreeData al], size) {
(size <= 0) {
NULL;
}

TreeNode *toReturn = newTreeNode(al[0]); // insert first item from list
i;
(i =1; i < size; i++) {
insert(alil], &toReturn);

toReturn;

An optional dictionary operation is size. Here is an implementation of size:

/* size
* returns the number of nodes in the tree
*/
size(TreeNode *t) {
(t == NULL) {
0;

1 + size(t->left) + size(t->right);

Suppose you create an empty tree and items are inserted as follows:

TreeNode * tree = NULL;
insert (5, &tree);
insert (8, &tree);
insert (2, &tree);
insert (1, &tree);
insert (10, &tree);
insert (7, &tree);
insert (9, &tree);
insert (12, &tree);

16. What does the BST look like?

17. What nodes are examined when finding 77?

18. What nodes are examined when finding 3?

19. Now, suppose this is a new tree and insertions are done in this order:

TreeNode * tree = NULL;
insert (1, &tree);
insert (3, &tree);
insert (4, &tree);
insert (6, &tree);
insert (7, &tree);
insert (8, &tree);
insert (9, &tree);

What does this tree look like?

There are ways to balance trees, so we get the win of searches happening closer to O(log;N)
rather than O(N). You can read about specific kinds of trees, such as red-black trees and AVL
trees that support tree rotations.

20. Give an insertion order of the same nodes in problem 4 that results in a full (complete)
BST where most interior nodes have two children. Show the tree that results from this insertion
order.

	BST Basics
	Delete Node
	Creating a Tree

