Activity #4: Stacks and Queues

Recorder’s Report

Manager: Reader:
Recorder: Driver:
Date: Score: Satisfactory / Not Satisfactory

Record your team’s answers to the key questions (marked with W) below.

a) Model 2, Question #5

b) Model 3, Question #7

¢) Model 5, Question #12

d) Model 6, Question #14

Activity #4: Stacks and Queues

We are studying data structures - ways to organize and structure data. Implementing a data
structure has pedagogical value, but as good (lazy?) computer scientists, we don’t want to
implement a new version of a familiar data structure for every situation. Instead, we want to
design an abstract data type (ADT) that captures the key ideas of a data structure and can be
used in many different situations.

This activity will give you some experience analyzing requirements and designing ADTs. In
particular, you will investigate stacks and queues.

Content Learning Objectives
After completing this activity, students should be able to:
* Explain a stack
¢ Identify the operations needed to support a stack

¢ Explain a queue

¢ Identify the operations needed to support a queue

Process Skill Goals

During the activity, students should make progress toward:

* Defining the operation function signatures for a stack

* Defining the operation function signatures for a queue

Preston Carman derived this work from Clif Kussmaul work found at https://cspogil.
@ org/ClifKussmaul-AlgorithmsandComputation and continues to be licensed under a
AREREE Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://cspogil.org/Clif Kussmaul - Algorithms and Computation
https://cspogil.org/Clif Kussmaul - Algorithms and Computation

Model 1 Stacks - Real World

Consider the following situations:

* A pile of papers or books on a table, where the top item is usually the most recently added.

¢ In arithmetic expressions, each ")" matches the most recent unmatched "(". In Java pro-
gramming, each "}" matches the most recent unmatched "{". In HTML, each </DIV>
matches the most recent unmatched <DIV>. In each case, a parsing program must keep
track of all unmatched symbols.

e If method A calls B, and B calls C, then when C ends control returns to B, and when B
ends control returns to A. (Control returns to the most recently called method).

* As people, if we have too many tasks or questions of similar importance, we tend to focus
on the most recent ones.

Refer to Model 1 above as your team develops consensus answers to the questions below.

Questions (10 min) Start time:

1. These situations are all examples of stacks. Summarize their key common characteristics in
2-4 complete English sentences.

2. List any variations or exceptions to these characteristics.

3. Trace the following actions in a stack (steps a through e are provided as examples).

action contents outcome
a. | empty stack
b. | get top item ERROR - empty stack
c.|add A A
d. | add B A |B
remove top item A B is removed
f. | get top item
g. | add C
h. | add D
1. | get top item
j- | add E
k.| add F

Otherwise, my whole career has just been flinging myself
at whatever is most overdue first and letting everything else stack up.

— Cathy Guisewite, American cartoonist, 1950-

Model 2 Stacks - Abstract Data Type

Note that stacks are often described as Last-In, First-Out (LIFO) or First-In, Last-Out (FILO)
(particularly if you are Greek :-)).

Questions (5 min) Start time:

4. Based on the key characteristics of stacks that you identified above, list at least 3 key oper-
ations for a stack ADT, and rank them (last column) by importance (1=high, 5=low).

action or operation rank

o

0

o

5. Start with the most important stack operation above, and define a method signature
including an appropriate name, input parameters, and return types. You may write the method
below, or create a class file in your IDE. Use "T" as a generic placeholder for the type of object
stored in the stack.

< ™
Stack {
Stack(maxSize); // constructor

?

}; // end class Stack

Review progress with the facilitator before continuing.

Model 3 Stacks - Array Implementation

A stack ADT can be implemented in multiple ways, as you will see. For now, we will consider
how to implement a stack using an array, e.g.:

< ™
Stack {
T* data; // array to store stack elements
capacity; // maximum size of stack
size; // current number of elements

Stack(maxSize) {

->capacity = maxSize;
->gize = 0;
->data = T[maxSize];
}
// methods

s
Refer to Model 3 above as your team develops consensus answers to the questions below.
Questions (10 min) Start time:

6. Show the contents of the data array after each operation. Assume we start with an empty
stack. If you use additional fields (e.g. to keep track of positions in the array), add a column for
each one and show how its value changes.

Operation [01 | a1 | 2] | [3]

a. | Create new data structure.

b. | Add value "A’.

c. | Add value 'B".

d. | Remove value.

e. | Add value 'C".

f. | Get current size.

g. | Remove value.

h. | Add value 'D’.

7. For each stack method, write a complete English sentence to describe how it could Ll

be implemented using an array, and its O() performance.
Hint: Ideally, the methods should be O(1), or O(N) at worst.

method implementation 0]))

Review progress with the facilitator before continuing.

Model 4 Queues - Real World

Consider the following situations:

a) People standing in a checkout line at a store or fast-food restaurant.
b) Suitcases or packages on a conveyor belt.
c) Phone callers on hold waiting for the "next available customer service representative".

d) Documents waiting to be printed on a printer.

Refer to Model 4 above as your team develops consensus answers to the questions below.

Questions (10 min) Start time:

8. These situations are all examples of queues. Summarize their key common characteristics
in 2-4 complete English sentences.

9. List any variations or exceptions to these characteristics.

(3 min) Trace the following actions in a queue (steps a through e are provided as examples).

action contents outcome
a. | empty queue
b. | get first item ERROR - empty queue
c. | add A A
d. | add B A |B
remove first item B A is removed
f. | get first item
g. | add C
h. | add D
i. | get first item
j- | add E
k. | add F

The Queen had only one way of settling all difficulties, great or small.
"Off with his head!” she said, without even looking round.

— Lewis Carroll, Alice in Wonderland

Model 5 Queues - Abstract Data Type

Note that queues are often described as First-In, First-Out (FIFO) or Last-In, Last-Out (LILO)
(particularly if you are lazy :-)).

Questions (5 min) Start time:

11. Based on the key characteristics of queues that you identified above, list at least 3 key
operations for a queue ADT, and rank them (last column) by importance (1=high, 5=low).
Review progress with the facilitator before continuing.

action or operation rank

IS

0

o

12. Start with the most important queue operation above, and define a method

signature including an appropriate name, input parameters, and return types. You may write
the method below, or create a class file in your IDE. Use "T" as a generic placeholder for the
type of object stored in the queue.

< ™
Queue {
Queue (maxSize); // constructor

?

}; // end class Queue

Review progress with the facilitator before continuing.

Model 6 Queues - Array Implementation

A queue ADT can be implemented in multiple ways, as you will see. For now, we will consider
how to implement a queue using an array, e.g.:

< >
Queue {
T* data; // array to store queue elements
capacity; // maximum size of queue
start; // index of first element
end; // index after last element
Queue (maxSize) {

->capacity = maxSize;
->start = 0;

->end = O;

->data = T[maxSize] ;
}
// methods

¥
Refer to Model 6 above as your team develops consensus answers to the questions below.
Questions (10 min) Start time:

13. Show the contents of the data array after each operation. Assume we start with an empty
queue. If you use additional fields (e.g. to keep track of positions in the array), add a column
for each one and show how its value changes.

Operation [01 | a1 | 21 | [3]
a. | Create new data structure.
b. | Add value "A’.
c. | Add value 'B’.
d. | Remove value.
Add value 'C’.
f. | Get current size.
g. | Remove value.
h. | Add value 'D’.

14. For each queue method, write a complete English sentence to describe how it couldw

be implemented using an array, and its O() performance.
Hint: Ideally, the methods should be O(1), or O(N) at worst.

method implementation 0]))

15. For an array implementation, a queue is somewhat more difficult than a stack. Explain
why this is the case and what extra thought is required to implement a queue.

Review progress with the facilitator before continuing.

An Englishman, even if he is alone, forms an orderly queue of one.
— George Mikes, British writer, 1912-1987

	Stacks - Real World
	Stacks - Abstract Data Type
	Stacks - Array Implementation
	Queues - Real World
	Queues - Abstract Data Type
	Queues - Array Implementation

