
Activity #2: Sorting
Recorder’s Report

Manager: Reader:

Recorder: Driver:

Date: Score: Satisfactory / Not Satisfactory

Record your team’s answers to the key questions (marked with) below.

a) Model 1, Question #5

b) Model 1, Question #7

c) Model 2, Question #14

d) Model 2, Question #19

Activity #2: Sorting
In this course, you will work in teams of 3–4 students to learn new concepts. This activity will
introduce you to sorting algorithms.

Content Learning Objectives

After completing this activity, students should be able to:

• Explain how arrays are sorted

• Explain the merge sort algorithm

Process Skill Goals

During the activity, students should make progress toward:

• Understand sorting algorithms

• Understand the merge sort algorithm

Preston Carman derived this work from Tammy van de Grift work found
at https://www.dropbox.com/sh/rl0yyth9g06psva/AADB0Cj4isIX5DAyrspqj8mFa?e=
1&preview=CS305+activity+13+selection+and+insertion+sort.pdf and continues to be li-
censed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 Interna-
tional License.

https://www.dropbox.com/sh/rl0yyth9g06psva/AADB0Cj4isIX5DAyrspqj8mFa?e=1&preview=CS305+activity+13+selection+and+insertion+sort.pdf
https://www.dropbox.com/sh/rl0yyth9g06psva/AADB0Cj4isIX5DAyrspqj8mFa?e=1&preview=CS305+activity+13+selection+and+insertion+sort.pdf

Model 1 Comparing

In computing, we often need to sort a set of items. As computer scientists, we study ways to
sort very large sets, with thousands or millions of values, since searching and other operations
are often easier when the set of values is sorted.
For example, the Harvard University Library has roughly 16,000,000 volumes, and the US Li-
brary of Congress has roughly 22,000,000 books, and over 100,000,000 total items. In 2010, a
team at UC San Diego sorted one trillion (1012) data records in 172 minutes. Simple O(N2)
sorting algorithms work well for small lists, but are too slow for larger lists. Most software li-
braries (APIs) include excellent sorting algorithms, but exploring better sorting algorithms also
demonstrates more general concepts in algorithm design and analysis.

1 void sort(int d[], int size);

2 void sort(string d[], int size);

3 void sort(City d[], int size);

4

5 void demo() {

6 int iu[] = {6, 3, 8, 2, 9};

7 int is[5];

8 sort(iu, 5);

9 string su[] = {"banana", "grape", "apple", "mango"};

10 string ss[4];

11 sort(su, 4);

12 City cu[] = {City::NYC, City::LAX, City::PHL, City::CHI};

13 City cs[4];

14 sort(cu, 4);

15 }

16

Refer to Model 1 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

1. Each sort() function above takes an array input and sorts it. What is different about the first
3 functions?

2. What sequence of values should appear in each variable below:

a. is

b. ss

3. In the table below, specify tests for sort():

Input: array to sort Expected Result

a. [] (empty list) empty list

b. [5] 5

c. [2, 4, 8]

d. [9, 7, 3, 5]

e. [27, 42, 35]

f. ["a"]

g. ["a", "b", "c"]

h. ["c", "b", "a"]

i. ["a3", "a1", "a2"]

j. ["bar", "ball", "back"]

4. It is easier to compare integers than strings. Explain why.

Suppose we had a list (e.g. a database or spreadsheet) of detailed information about cities:

Name Area (sq mi) Population Altitude Latitude Longitude

Chicago 227.6 2,700,000

Los Angeles 468.7 3,800,000

New York 302.6 8,200,000

...

5. Explain why it could be harder to compare Cities than strings.

6. It can be useful to abstract the comparisons used in searching & sorting.

a) In the Sample Code handout, what function is declared in the Comparable interface?

b) The C++ std::copysign() function (or custom signum) returns 0 if its input is 0, +1 if its
input is positive, and -1 if its input is negative. In the Sample Code handout, how does
class City compare two cities?

c) The C++ standard library class string provides comparison operators. Given this, what
C++ expression would compare two strings: s1 and s2?

7. In class City, modify the return statement to compare Cities using:

a. population

b. name (al-
phabetical)

c.
name (re-
verse alpha-
betical)

d. population
density

8. Comparison can be abstracted in more than one way. In the Sample Code handout, what
functions are declared in the Comparator interface?

9. For each class listed below, describe how it compares 2 objects.

a. class

StringCompI

b. class

StringCompL

c. class

CityCompA

d. class

CityCompP

10. Change the return statement in CityCompA::compare() to compare:

a. name (al-
phabetical)

b.
name (re-
verse alpha-
betical)

c. population
density

Model 2 Merge

Refer to Model 2 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

Some sort algorithms (e.g. bubble sort and selection sort) are simple but inefficient. To under-
stand a better sort algorithm, we’ll start with something easier - merge.

11. Recall that θ(), O(), and ω() notation describes how input size affects operation count and
run time. If the input size doubles, what happens to the run time if an algorithm is O(1), O(N),
etc? Which line at right shows this?

a. O(1) b. O(N) c. O(N2) d. O(log N)

12. Use the table below to specify unit tests for merge(arrA, arrB), which merges two sorted
arrays into one sorted array.

arrA arrB Expected Result (return value, exception, etc)

(empty) (empty) (empty)

"B" (empty)

(empty) "A"

"B" "A"

"B", "D" "A", "C"

"B", "C", "D" "A", "C"

13. Given 2 sorted arrays arrA & arrB that will be merged into one sorted array arrC.

arrA

a0 a1 a2 a3

arrB

b0 b1 b2 b3

⇒ arrC

c0 c1 c2 c3 c4 c5 c6 c7

a) What is the length of arrC, in terms of arrA.length and arrB.length?

b) There are only 2 values (a0 and b0) that could go into c0. Explain why.

c) Once c0 is chosen, there are only 2 values that could go into c1. Explain why.

d) Similarly, once c0 to ci are chosen, there are only 2 values that could go into ci+1. Explain.

14. Given your answers above, how could we merge() 2 arrays efficiently?
In complete sentences or pseudocode, describe a general approach for merge().
void merge(string arrA[], int sizeA, string arrB[], int sizeB, string arrC[])

15. The table below shows the contents of sorted arrays arrayA and arrayB. Complete the table
to show how arrayC and the 3 index variables (ai, bi, ci) change over time.

arrayA arrayB arrayC vars

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7 ai bi ci

2 6 12 14 3 5 15 17 0 0 0

2 6 12 14 3 5 15 17 2 1 0 1

2 6 12 14 3 5 15 17 2 3 1 1 2

2 6 12 14 3 5 15 17 2 3

2 6 12 14 3 5 15 17 2 3

2 6 12 14 3 5 15 17 2 3

2 6 12 14 3 5 15 17 2 3

2 6 12 14 3 5 15 17 2 3

2 6 12 14 3 5 15 17 2 3

16. During merge(), if there are N/2 values in each sorted array, and N values in the merged
array (also sorted), explain the O() effort to find:

O() Explanation

a. The first value in
the merged array.

b.
The second value
in the merged ar-
ray.

c.
Each succes-
sive value in the
merged array.

d. All N values in the
merged array.

17. In the following questions, a 2 item list is called a 2-list, a N item list is called an N-list, etc.
Decide if each of the following is always sorted (Y or N):

a. a 16-list of random numbers

b. the first half of a 32-list of random numbers

c. a 1-list

d. a 2-list made by merging 2 (sorted) 1-lists

e. a 16-list made by merging 2 (sorted) 8-lists

f. a N-list made by merging 2 (sorted) (N/2)-lists

18. Decide how many new lists are made when pairs of lists are merged from:

a. 1024 1-lists into 2-lists

b. all of those 2-lists into 4-lists

c. N 1-lists (for any N) into 2-lists

d. all of those 2-lists into 4-lists

19. How could we use merge to sort an unsorted list? (Hint: think recursively.)
In complete English sentences, describe a general approach for mergesort.

	Comparing
	Merge

