

Activity #1: Algorithm Analysis Recorder's Report

Manager:

Reader:

Recorder:

Driver:

Date:

Score: Satisfactory / Not Satisfactory

Record your team's answers to the key questions (marked with below.

a) Model 1, Question #7

b) Model 2, Question #12

c) Model 3, Question #18

d) Model 3, Question #20

Activity #1: Algorithm Analysis

In this course, you will work in teams of 3–4 students to learn new concepts. This activity will introduce you to the process of analyzing an algorithm complexity.

Content Learning Objectives

After completing this activity, students should be able to:

- Explain an algorithm's runtime complexity
- Explain how to count operations

Process Skill Goals

During the activity, students should make progress toward:

- Read code and determine runtime complexity

Preston Carman derived this work from Matt Lang work found at https://www.dropbox.com/sh/5nm6rbih4ygp12f/AACSY2zM_-VNVSk5Sjf2qFla and continues to be licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Model 1 Reorder Function Analysis

Reorder is a method that sorts two array elements.

```
1 void reorder(int array[], int i, int j) {  
2     if (array[i] > array[j]) {  
3         int temp = array[i];  
4         array[i] = array[j];  
5         array[j] = temp;  
6     }  
7 }  
8
```

Refer to Model 1 above as your team develops consensus answers to the questions below.

Questions (15 min)

Start time:

1. Suppose an array a contains the values {6, 11, 9, 13}. List the contents of a after the method call `reorder(a, 1, 2)`
2. Suppose we define an *operation* as an assignment statement, arithmetic operation, or comparison. How many operations does the method execute when `reorder(a, 1, 2)` is called?
3. How many operations does the method execute when `reorder(a, 0, 1)` is called?

4. Suppose an array `b` contains the values `{2, 6, 13, 8, 3}`. How many operations does the method execute when `reorder(b, 3, 4)` is called?

5. How many operations does the method execute when `reorder(b, 1, 2)` is called?

6. Is there an upper bound on the number of operations that `reorder` can execute? Why or why not?

7. Does the number of operations the method executes depend on the size of its input (*i.e.*, the number of elements in the input)? Why or why not?

8. We say that the `reorder` method executes in *constant* time. Another way to say this is that the method is $\Theta(1)$. Complete the following sentence:

A method is $\Theta(1)$ (or executes in constant time) if...

Model 2 Normalize Function Analysis

Normalize is a function that maps values in the range $[min..max]$ to the range $[0..1]$.

```
1 void normalize(double array[], int size, double min, double max) {  
2     for (int i = 0; i < size; i++) {  
3         array[i] = (array[i] - min) / (max - min);  
4     }  
5 }
```

Refer to Model 2 above as your team develops consensus answers to the questions below.

Questions (15 min)

Start time:

9. Suppose an array a contains the values $\{5, 15, 10\}$ and the function is called with the following function call:

```
normalize(a, 3, 5, 15);
```

What are the contents of the array after this function call?

10. How many operations does the function execute when `normalize(a, 3, 5, 15)` is called?
Note: the initialization of the variable i executes before the first iteration of the loop. The iteration and comparison statements occur after each iteration of the loop.

11. Suppose the `normalize` function is called with an array of length 20 as an argument. How many operations are executed by the function?

12. Suppose the `normalize` function is called with an array of length n as an argument. How many operations are executed by the function?

13. We say that the `normalize` function runs in *linear* time. Another way to say this is that the function is $\Theta(n)$. Complete the following sentence:

A function is $\Theta(n)$ (or executes in linear time) if...

14. We say that *quadratic* time functions are $\Theta(n^2)$. Complete the following sentence:

A function is $\Theta(n^2)$ (or executes in quadratic time) if...

Model 3 Analysis Functions

Questions (20 min)

Start time:

Label each of the following functions either $\Theta(1)$, $\Theta(n)$, or $\Theta(n^2)$.

```
1 int max(int a, int b) {  
2     if (a > b) {  
3         return a;  
4     } else {  
5         return b;  
6     }  
7 }  
8
```

15. The `max` function is $\Theta(\quad)$. Justify your answer.

```
1 int maxElement(int array[], int size) {  
2     int max = array[0];  
3     for (int i = 0; i < size; i++) {  
4         if (array[i] > max) {  
5             max = array[i];  
6         }  
7     }  
8     return max;  
9 }  
10
```

16. The `maxElement` function is $\Theta(\quad)$. Justify your answer.

```
1 int maxSubseqSum(int array[], int size) {  
2     int max = array[0];  
3     for (int i = 0; i < size; i++) {  
4         int sum = 0;  
5         for (int j = i; j < size; j++) {  
6             sum += j;  
7             if (sum > max) {  
8                 max = sum;  
9             }  
10        }  
11    }  
12    return max;  
13 }  
14
```

17. The `maxSubseqSum` function is $\Theta(\quad)$. Justify your answer.

18. We are using the number of operations a function executes as a measure of its run time. In a few complete sentences, explain why we are using this measure of time rather than a wall-clock measure of time (*i.e.*, minutes, seconds, *etc.*).

19. Why is knowing that a function is $\Theta(n)$ more valuable than knowing that it takes fifteen seconds to execute on a 2.7GHz i7? In the space below, list the pros and cons for each statement.

- “The function is $\Theta(n)$.”
- “The function took 15s on my i7.”

20. Is it possible that there are inputs for which a $\Theta(1)$ function executes more operations than a $\Theta(n)$ function that has the same specification? Why or why not?