
Activity #27: Recursion
Recorder’s Report

Manager: Reader:

Recorder: Driver:

Date: Score: Satisfactory / Not Satisfactory

Record your team’s answers to the key questions (marked with ) below.

a) Model 1, Question #2

b) Model 2, Question #6

c) Model 3, Question #15



Activity #27: Recursion
In this activity, you will work in teams of 3–4 students to learn new concepts. This activity will
introduce you to recursion in C++.

Content Learning Objectives

After completing this activity, students should be able to:

• Identify the base case and recursive step of the factorial function

• Trace a recursive function by hand and and predict its final output

• Explain what happens in memory when a function calls itself

Process Skill Goals

During the activity, students should make progress toward:

• Write a recursive function to compute the sum of the first n numbers

Preston Carman derived this work from Unknown work found at unknown and contin-
ues to be licensed under a Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.

unknown


Model 1 The Factorial Function
n 0 1 2 3 4 5
n! 1 1 2 6 24 120

Refer to Model 1 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

1. In mathematics, the factorial function for a natural number n is denoted by n!. It is the
product of all positive integers less than or equal to n. For example:

5! = 5 × 4 × 3 × 2 × 1 = 120

Consider how to calculate 4!.

a) Write out all of the numbers that need to be multiplied to get 4!.

b) Rewrite the expression using 3! instead of 3 × 2 × 1.

2. Express the factorials as a product of a single natural number with a simpler factorial
.

a) 3! =

b) 2! =

c) 100! =

d) n! =

Now consider the very first natural number, 0.

a) Based on the model, what is the value of 0!?

b) Does it make sense to define 0! in terms of a simpler factorial? Explain.



c) When we define the value of a function by referencing that same function for a simpler
value, we will eventually reach a point where there are no simpler values and we have to
just give a concrete value to the function. This is called a base case. What is the base case
for the factorial function?

3. Suppose you already have a working implementation of the function declared below.

int factorial(int n);

a) How could you compute 100! without calling factorial(100)? Give a C++ command to
do this.

b) How could you compute n! without calling factorial(n)? Give a C++ command to do
this.



Model 2 A C++ Factorial Function

1 int factorial(int n) {

2 cout << "n is " << n << endl;

3 if (n == 0) {

4 return 1; // base case

5 } else {

6 cout << "need factorial of " << (n-1) << endl;

7 int answer = factorial(n-1);

8 cout << "factorial of " << (n-1) << " is " << answer << endl;

9 return n * answer;

10 }

11 }

12

Refer to Model 2 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

4. This model gives a definition of the factorial function. Use it to answer the following
questions.

a) What specific function is called on line 10?

b) Why is the if statement on line 6 needed?

5. A function that calls itself is called recursive. What two steps are required to define the
recursive function
factorial?

6. Because recursive functions call themselves as a part of their execution, it takes some
thought to understand their execution.

a) How many distinct function calls would be made to the factorial function to compute
2!? Identify the function argument for each of those calls.



b) How many distinct function calls would be made to the factorial function to compute
4!? Identify the function argument for each of those calls.

7. The file activity27a.cpp.cpp contains the function from this model along with a test func-
tion call to compute 5!. Run this program and then identify the function call which produces
each line of output below. Several have been done for you.

a) n is 5 factorial(5)

b) need factorial of 4

c) n is 4

d) need factorial of 3

e) n is 3

f) need factorial of 2

g) n is 2

h) need factorial of 1 factorial(2)

i) n is 1

j) need factorial of 0

k) n is 0

l) factorial of 0 is 1 factorial(1)

m) factorial of 1 is 1

n) factorial of 2 is 2

o) factorial of 3 is 6

p) factorial of 4 is 24

8. What happens if you try to calculate the factorial of a negative number? Explain why this
happens.

9. How could you prevent this behavior?

10. What is the largest factorial you can compute in C++ without changing the types of the
variables in this function? Play with the code in activity08.cpp to find out.



Model 3 Summations

100

∑
i=1

i = 1 + 2 + 3 + · · ·+ 100 = 5050

Refer to Model 3 above as your group develops consensus answers to the questions
below.

Questions (20 min) Start time:

11. In mathematics, summation (represented by the Greek letter “sigma”, Σ) is the addition of a
sequence of numbers resulting in a single sum or total. For example,

i=3

∑
i=1

i = 1 + 2 + 3 = 6

Consider how to calculate
5

∑
i=1

i.

a) Write out all the numbers that need to be added.

b) Show how this sum can be calculated in terms of a smaller summation.

12. Express the summations as a sum of a single natural number and a shorter summation.

a)
100

∑
i=1

i = b)
n

∑
i=1

i =

c) The base case for this summation is:

13. Write a C++ function summation that takes a single parameter n and returns the sum 1 +
2 + · · ·+ n. It should only have an if statement and two return statements.



14. Below is a different recursive implementation of the factorial function seen in model 2.

1 int factorial(int n) {

2 if (n == 0) {

3 return 1; // base case

4 }

5 int recurse = factorial(n-1);

6 int result = n * recurse;

7 return result;

8 }

9

a) How are temporary variables used in this
function?

b) What would you change to change this to a
summation function?

15. Below is a stack diagram of a call to this implementation of factorial(3) from the
main program. Sketch a similar diagram for a call to summation(3).

main

factorial n 3 recurse 2result 6

factorial n 2 recurse 1result 2

factorial n 1 recurse 1result 1

factorial n 0

1

1

2

6

a) Why are there no values for recurse and result in the stack diagram for the last call to
factorial (when n == 0?

b) Looking at the stack diagram, how is it possible that the parameter n can have multiple
values in memory at the same time?


	The Factorial Function
	A C++ Factorial Function
	Summations

