Activity #20: Introduction to Classes

Recorder’s Report

Manager: Reader:
Recorder: Driver:
Date: Score: Satisfactory / Not Satisfactory

Record your team’s answers to the key questions (marked with W) below.

a) Model 1, Question #2

b) Model 2, Question #6

¢) Model 3, Question #12 (a)

Activity #20: Introduction to Classes

In this activity, you will work in teams of 3—4 students to learn new concepts. This activity will
introduce you to classes in C++.

Content Learning Objectives

After completing this activity, students should be able to:
* Explain the benefits of abstraction in programming
* Explain the syntax for defining classes in C++

¢ Explain the benefits of encapsulation in programming

* Explain the use of mutator and accessor methods

Process Skill Goals

During the activity, students should make progress toward:

¢ Construct a simple class with data fields and methods

Preston Carman derived this work from Unknown work found at unknown and contin-
@ G)@@ ues to be licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

e 4.0 International License.

unknown

Model1 C++ Code Snippets

/* Data for multiple rectangles */

* i i *
MAX_RECTANGLES = 100: /* Functions to use with rectangles */

tA length, idth) ;
rectX [MAX_RECTANGLES]; g:tPZiineter(eng length “ n)aidth)-
rectY [MAX_RECTANGLES] ; gmove(.l . gth» i -
rectWidth [MAX_RECTANGLES] ; ’ v ’ v
draw(X, ¥y, wd, ht);

rectHeight [MAX_RECTANGLES] ;

Refer to Model 1 above as your group develops consensus answers to the questions
below.

Questions (10 min) Start time:

1. The C++ code snippets above come from a program designed to define and manipulate
rectangles. Answer the following questions related to this code.

a) Give C++ code to define a rectangle at the point (1, 1) with a width of 3 and a height of 2
stored at index 0 in the arrays above.

b) Write an appropriate function call for each task described below.

(a) Move your rectangle up 2 and over 1.
(b) Compute the area of your rectangle.

(c) Draw your rectangle

c) What would you have to change in order to make the function calls above reference an-
other rectangle stored at index 1?

2. A complete version of the program can be found in the file activity20a.cpp. Add Ll
to this code to complete the following tasks.

* Create a second rectangle at point (2,5) with width 10 and height 8.

e Move your second rectangle so that its point is at (0, 0).

¢ Determine which of the two rectangles has a larger perimeter (using C++ code).
* Draw your second rectangle.

Describe the most frustrating part of completing the tasks above.

3. In programming, the term abstraction is used to describe representing complex things simply.
For example, we all know how to turn on a light switch even if we don’t understand how it
actually works. Decide if each of the following statements regarding this model is true or false.

a) We can define new rectangles without knowing the details of how rectangles are
stored.

b) We can compute the area or perimeter of a rectangle without understanding the
details.

C) We can draw or move a rectangle without understanding the details.

d) If we needed to expand our program to define and manipulate circles, we could
do so without renaming functions or confusing circle and rectangle code.

Model 2 A Different Approach

Rectangle {
X; // (x,y) coords
ys
width; // width (dx)

height; // height (dy)
getArea();
getPerimeter();

move(dx, dy);
draw() ;

/* Data for multiple rectangles */
MAX_RECTANGLES = 100;
Rectangle myRects[MAX_RECTANGLES];

/* create rectangle at point (1,1) */
myRects[0] .x = 1;

myRects[0].y = 1;

myRects[0] .width = 2;

myRects[0] .height = 3;

/* move this rectangle up 2 and over 1 x/
myRects[0] .move(1,2);

Refer to Model 2 above as your group develops consensus answers to the questions

below.

Questions (10 min)

Start time:

4. The code for this model can be found in activity0O1b.cpp. Use it to help you complete the
following table, filling in the equivalent code in each model.

Model 1

Model 2

// define a new rectangle
myRects[0].x = 1;
myRects[0].y = 1;
myRects[0] .width = 2;
myRects[0] .height = 3;

// draw the 3rd rectangle
draw(rectX[2],rectY[2],
rectWidth[2] ,rectHeight[2]);

// compare rectangle areas
(
myRect [0] .getArea() > myRect[1].getArea()
) Ao

cout << "First rectangle has more area";

}

/* error moving x from rectangle O
and y form rectangle 1
move(rectX[0], rectY[1], 3, 5);

*/

5. Now decide if each of the following statements is true or false for model 2.

a) We can define new rectangles without knowing the details of how rectangles are
stored.

b) We can compute the area or perimeter of a rectangle without understanding the
details.

C) We can draw or move a rectangle without understanding the details.

d) If we needed to expand our program to define and manipulate circles, we could
do so without renaming functions or confusing circle and rectangle code.

6. Describe at least open advantage of the approach in model 2 over that seen in S

model 1.

7. Suppose we wish to ensure that other programmers never set rectangle widths and heights
to be negative. Can this be done in either model? Explain.

Model 3 Revising Our Approach

};

Rectangle {

init(xVal, yVal, wVal, hVal);
getArea();
getPerimeter();

move (dx, dy);

draw() ;

X; // (x,y) coords of bottom left corner
Vs

width; // width (dx) and height (dy)

height;

Refer to Model 3 above as your group develops consensus answers to the questions

below.

Questions (30 min)

Start time:

8. Formulate a hypothesis about what each of the lines from the model mentioned below is for.

a) Line 2:
b) Line 8:

¢) Line 3:

9. The full code for this model can be found in activityOic.cpp. Make the following changes
to this code (resetting after each change) and describe what happens.

a) On line 24, add the code myRects[0].x = 5; and compile.

b) Change line 26 to use the function call myRects[0] .init(1,1,-5,3)

10. We’ve previously seen that global variables should be avoided. Similarly, when defininig
classes, we should protect the variables in the class by making them private. This practice
is called encapsulation. Give at least one reason why encapsulation is a desirable feature in a
program.

11. Functions that belong to a class are called member functions. How are member functions
defined?

12. We've previously asked about expanding our program to define and manipulate circles.
Assuming that a circle is defined by a center (x,y) point and a non-negative radius, complete
the following.

a) Give a definition of a class for circles. Try to use abstraction and encapsulation as'w
much as possible.

b) Add code to the main program to define a circle at the point (—2, 1) with radius 3.

¢) Add member functions to compute the area (7tr?) and circumference (27tr) of a circle.

d) Write code to compare the areas of the circle you defined and the rectangle defined in the
program and indicate which is bigger.

	C++ Code Snippets
	A Different Approach
	Revising Our Approach

