
Activity #18: Writing to Files
Recorder’s Report

Manager: Reader:

Recorder: Driver:

Date: Score: Satisfactory / Not Satisfactory

Record your team’s answers to the key questions (marked with) below.

a) Model 1, Question #4

b) Model 2, Question #10

c) Model 3, Question #18

Activity #18: Writing to Files
In this activity, you will work in teams of 3–4 students to learn new concepts. This activity will
introduce you to writing to files in C++.

Content Learning Objectives

After completing this activity, students should be able to:

• Explain how to open a text file for writing

• Explain the difference between writing and appending to a file

• Explain how files can be used to save program configuration information

Process Skill Goals

During the activity, students should make progress toward:

• Write code that opens, writes to, and closes a file

• Redirect the output of a program to a text file

Preston Carman derived this work from Lisa Olivieri work found at https:
//www.dropbox.com/sh/2fx6pg4ydpu9t7x/AAAdJfzvLjeym1gJwKrIWwhBa?
preview=Python+Activity+15+Writing+to+Files+-+POGIL.docx and continues to
be licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License.

https://www.dropbox.com/sh/2fx6pg4ydpu9t7x/AAAdJfzvLjeym1gJwKrIWwhBa?preview=Python+Activity+15+Writing+to+Files+-+POGIL.docx
https://www.dropbox.com/sh/2fx6pg4ydpu9t7x/AAAdJfzvLjeym1gJwKrIWwhBa?preview=Python+Activity+15+Writing+to+Files+-+POGIL.docx
https://www.dropbox.com/sh/2fx6pg4ydpu9t7x/AAAdJfzvLjeym1gJwKrIWwhBa?preview=Python+Activity+15+Writing+to+Files+-+POGIL.docx

Model 1 A C++ Main Function

1 #include <iostream>

2 #include <fstream>

3 #include <string>

4

5 using namespace std;

6

7 int main() {

8 ofstream fout;

9 fout.open("studentInfo.txt", ofstream::app);

10

11 string firstName, lastName, studentID;

12

13 cout << "Enter first name: ";

14 cin >> firstName;

15

16 cout << "Enter last name: ";

17 cin >> lastName;

18

19 cout << "Enter student ID: ";

20 cin >> studentID;

21

22 fout << "Name: " << firstName << " " << lastName << endl;

23 fout << "Student ID: " << studentID << endl;

24 fout << endl;

25

26 fout.close();

27

28 cout << "Done! Data is saved in: studentInfo.txt" << endl;

29 }

30

Refer to Model 1 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

1. This code can be found in activity18a.cpp. Run it and record what output appears on the
screen.

2. Locate the file studentInfo.txt and examine its contents.

a) What is in this file?

b) Did this file exist before the program ran?

c) On which line of code was the file created?

d) Which lines generated the file contents?

e) Why wasn’t the message on line 28 in the file?

3. Run the program again using different input. Then open the studentInfo.txt file. What is
in the file? Is the data from the first time you ran it still there?

4. Remove the ofstream::app argument in the .open() function call on line 9 and
run the program again with different input.

a) What happened to the contents of studentInfo.txt?

b) What did the ofstream::app argument do?

5. You should have observed that lines 22-24 send output to the the file studentInfo.txt. How
does C++ know to send the output to that file?

6. Rewrite the program so the user can keep entering names until they type in DONE for the first
name.

Model 2 Redirecting Output to a File

1 for (int i = 1; i <= 5; i++) {

2 cout << "Number: " << i << endl;

3 }

4 cerr << "Done!" << endl;

5

terminal commands

g++ activity18c.cpp -o test.o

./test.o > output.txt 2> error.txt

Refer to Model 2 above as your team develops consensus answers to the questions below.

Questions (15 min) Start time:

7. The file activity18b.cpp contains the code shown on the left-hand side of the model. Run
this program as you normally would and describe its output.

8. Now open a terminal in this same folder (right click on the folder name and pick Open in
Terminal) and type in the commands shown in the model, pressing Enter after each line.

a) What is output to the screen?

b) What new files now appear in the folder?

c) Which file contains the output from cout?

d) Which file contains the output from cerr?

9. Recall that the command ./program.o < input.txt redirects the contents of the input.txt

file to the program as if it were entered from the keyboard. The command above redirects the
program output to various files.

a) What part of the second terminal command redirects the output set to cout to a file?

b) What par tof the command redirects the output sent to cerr to a file?

10. Pick a previous homework assignment that produces output. Open a terminal
in that folder, compile the program, and save the output to a file. Recall that we have not used
cerr previously, so you only need to direct the output from cout. What command did you use?

Model 3 A Configuration Function

1 void getSetup(int &rows, int &cols, char &charOne, char &charTwo) {

2 ifstream configIn;

3 configIn.open("gameBoard.cfg");

4 if (configIn.is_open()) {

5 configIn >> rows;

6 configIn >> cols;

7 configIn >> charOne;

8 configIn >> charTwo;

9 } else {

10 cout << "Enter Number of Rows: ";

11 cin >> rows;

12 cout << "Enter Number of Columns: ";

13 cin >> cols;

14 cout << "Enter Player One Symbol: ";

15 cin >> charOne;

16 cout << "Enter Player Two Symbol: ";

17 cin >> charTwo;

18 }

19 }

20

"gameBoard.cfg"

6

5

#

Refer to Model 3 above as your team develops consensus answers to the questions below.

Questions (20 min) Start time:

11. Without running the program, determine what the function getSetup does.

12. Suppose that this function were called with the contents of gameBoard.cfg as shown. To
what value would each of the following variables be set?

a) rows =

b) cols =

c) charOne =

d) charTwo =

13. What is missing from the function with regard to the configIn stream?

14. This function is part of the program in activity18c.cpp. Run it and record what it does.

15. Now delete the file gameBoard.cfg and run the program again. What does it do differently?

16. A configuration file is a file that saves the setup for a program so that it does not have to be
entered every time the program runs. Recreate the file gameBoard.cfg and adjust its contents
so that an 8 by 10 board is printed using characters $ and @. What should appear on each line
of gameBoard.cfg?

a) Line 1:

b) Line 2:

c) Line 3:

d) Line 4:

17. Instead of changing the contents of the configuration file by hand, it makes sense to have
the program save them. Answer the questions below to help you think through adding this
feature to the function.

a) What type of variable will we need to declare in the function body?

b) Where in the function should we write to the file?

c) Should we call .open() with or without ofstream::app?

18. Modify the function so that it saves the configuration file. Indicate what you add.

	A C++ Main Function
	Redirecting Output to a File
	A Configuration Function

